74 research outputs found

    Joint precoder and window design for OFDM sidelobe suppression

    Get PDF
    Spectral precoding and windowing are two effective approaches to reduce out-of-band radiation (OBR) in multicarrier systems. Their performance comes at the price of reduced throughput and additional computational complexity, so there is strong motivation for simultaneously using both techniques. We present a novel design that jointly optimizes the precoder and window coefficients to minimize radiated power within a user-selectable frequency region. Results show that the proposed design achieves a better OBR/throughput/complexity tradeoff than either of these individual techniques separately.Agencia Estatal de Investigación | Ref. BES-2017-080305Agencia Estatal de Investigación | Ref. PID2019-105717RB-C21Agencia Estatal de Investigación | Ref. PID2019-105717RB-C2

    Maximally stationary window design for overlap-add based random vibration synthesis

    Get PDF
    The accurate synthesis of realistic waveforms conforming to certain specifications is a fundamental step in random vibration testing. Since real-time implementation of digital signal processing systems for random vibration and noise synthesis necessarily operates frame by frame, the overlap-add (OLA) method, by which frames are windowed and overlapped, is widely used in practice to avoid artifacts at frame boundaries. When a wide-sense stationary random signal is desired, however, the OLA method presents a shortcoming, because the inherent periodicity of the frame-by-frame process unavoidably produces a cyclostationary signal, i.e., its statistics present an undesired periodic behavior. We analyze the impact of the window coefficients in the cyclostationarity properties of the synthetic process, and then present algorithms for window design with the goal of maximizing a measure of its stationarity, considering both second- and fourth-order statistical properties. The proposed designs are shown to significantly improve the stationarity properties when compared to commonly used windows.Agencia Estatal de Investigación | Ref. TEC2016-76409-C2-2-

    Partial-duplex amplify-and-forward relaying: spectral efficiency analysis under self-interference

    Get PDF
    We propose a novel mode of operation for Amplify-and-Forward relays in which the spectra of the relay input and output signals partially overlap. This partial-duplex relaying mode encompasses half-duplex and full-duplex as particular cases. By viewing the partial-duplex relay as a bandwidth-preserving Linear Periodic Time-Varying system, an analysis of the spectral efficiency in the presence of self-interference is developed. In contrast with previous works, self-interference is regarded as a useful information-bearing component rather than simply assimilated to noise. This approach reveals that previous results regarding the impact of self-interference on (full-duplex) relay performance are overly pessimistic. Based on a frequency-domain interpretation of the effect of self-interference, a number of suboptimal decoding architectures at the destination node are also discussed. It is found that the partial-duplex relaying mode may provide an attractive tradeoff between spectral efficiency and receiver complexity.Agencia Estatal de Investigación | Ref. TEC2016-75103-C2-2-RAgencia Estatal de Investigación | Ref. TEC2016-76409-C2-2

    Hybrid beamforming designs for frequency-selective mmWave MIMO systems with Per-RF chain or per-antenna power constraints

    Get PDF
    Configuring precoders and combiners is a major challenge to deploy practical multiple-input multiple-output (MIMO) millimeter wave (mmWave) communication systems with large antenna arrays. Most prior work addresses the problem focusing on a total transmit power constraint. In practical transmitters, however, power amplifiers must operate within their linear range, so that a power constraint applies to each one of the input signals to these devices. Therefore, precoder and combiner designs should incorporate per-antenna or per-radio frequency (RF) chain transmit power constraints. We focus on such problem for frequency-selective channels with multicarrier modulation, and assuming hybrid analog/digital architectures based on fully connected analog blocks implemented with finite-resolution phase shifters. We first derive an all-digital solution which aims to maximize spectral efficiency. Then, we develop hybrid precoders and combiners by approximately matching the corresponding all-digital matrices while still enforcing the power constraints. Numerical results show that the proposed all-digital design performs close to the upper bound given by the standard waterfilling-based solution with a total power constraint. Additionally, the hybrid designs exhibit a moderate loss even when low-resolution phase shifters are considered.Agencia Estatal de Investigación | Ref. PID2019-105717RB-C21Xunta de Galicia | Ref. ED431C 2021/4

    Mask-compliant orthogonal precoding for spectrally efficient OFDM

    Get PDF
    Orthogonal precoding constitutes a powerful technique to reduce spectrum sidelobes of multicarrier signals. This reduction is bought at the cost of introducing precoder redundancy, which results in some throughput loss and additional precoding/decoding complexity. When the goal is to meet some spectral emission mask constraints, it is desirable to avoid unnecessary sidelobe suppression in order to keep precoder redundancy at a minimum. In this context, we introduce a general framework under which we develop a novel Lagrange multiplier-based mask-compliant orthogonal precoder design targeting minimal redundancy. We also adapt to this framework two previously proposed designs based on spectral notches and minimum out-of-band emission, respectively, to explicitly incorporate mask constraints. Simulation results are provided to show the effectiveness of the proposed designs under different practical masks for multicarrier wireless systems.Agencia Estatal de Investigación | Ref. TEC2016-76409-C2-2-RAgencia Estatal de Investigación | Ref. BES-2017-080305Agencia Estatal de Investigación | Ref. PID2019-105717RB-C21Xunta de Galici

    Distributed multivariate regression with unknown noise covariance in the presence of outliers: an MDL approach

    Get PDF
    We consider the problem of estimating the coefficients in a multivariable linear model by means of a wireless sensor network which may be affected by anomalous measurements. The noise covariance matrices at the different sensors are assumed unknown. Treating outlying samples, and their support, as additional nuisance parameters, the Maximum Likelihood estimate is investigated, with the number of outliers being estimated according to the Minimum Description Length principle. A distributed implementation based on iterative consensus techniques is then proposed, and it is shown effective for managing outliers in the data.Peer ReviewedPostprint (author's final draft

    Distributed AOA-based source positioning in NLOS with sensor networks

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper focuses on the problem of positioning a source using angle-of-arrival measurements taken by a wireless sensor network in which some of the nodes experience non lineof-sight (LOS) propagation conditions. In order to mitigate the errors induced by the nodes in NLOS, we derive an algorithm that combines the expectation-maximization algorithm with a weighted least-squares estimation of the source position so that the nodes in NLOS are eventually identified and discarded. Moreover, a distributed version of this algorithm based on a diffusion strategy that iteratively refines the position estimate while driving the network to a consensus is presented.Peer ReviewedPostprint (author's final draft

    Parameter estimation in wireless sensor networks with faulty transducers: a distributed EM approach

    Get PDF
    We address the problem of distributed estimation of a vector-valued parameter performed by a wireless sensor network in the presence of noisy observations which may be unreliable due to faulty transducers. The proposed distributed estimator is based on the Expectation-Maximization (EM) algorithm and combines consensus and diffusion techniques: a term for information diffusion is gradually turned off, while a term for updated information averaging is turned on so that all nodes in the network approach the same value of the estimate. The proposed method requires only local exchanges of information among network nodes and, in contrast with previous approaches, it does not assume knowledge of the a priori probability of transducer failures or the noise variance. A convergence analysis is provided, showing that the convergent points of the centralized EM iteration are locally asymptotically convergent points of the proposed distributed scheme. Numerical examples show that the distributed algorithm asymptotically attains the performance of the centralized EM method.Peer ReviewedPreprin

    Distributed precoding systems in multi-gateway multibeam satellites: regularization and coarse beamforming

    Get PDF
    This paper deals with the problem of beamforming design in a multibeam satellite, which is shared by different groups of terminals -clusters-, each served by an Earth station or gateway. Each gateway precodes the symbols addressed to its respective users; the design follows an MMSE criterion, and a regularization factor judiciously chosen allows to account for the presence of mutually interfering clusters, extending more classical results applicable to one centralized station. More importantly, channel statistics can be used instead of instantaneous channel state information, avoiding the exchange of information among gateways through backhaul links. The on-board satellite beamforming weights are designed to exploit the degrees of freedom of the satellite antennas to minimize the noise impact and the interference to some specific users. On-ground beamforming results are provided as a reference to compare the joint performance of MMSE precoders and on-board beamforming network.Agencia Estatal de Investigación | Ref. TEC2016-76409-C2-2-RAgencia Estatal de Investigación | Ref. TEC2016-75103-C2-2-RXunta de Galici
    corecore